

Presentation at Living With a Star Workshop

R. A. Hoffman B. L. Giles

Mission Objectives

- Obtain scientific understanding of the sources, transport and losses of radiation belt particles
 - with special emphasis on penetrating radiation during geomagnetic storms
- Acquire the data required for the development of empirical and sciencedriven radiation belt models
- Acquire the data for real time telemetry needed by the operations community

Measurement Goals

Science Community

- Coverage of full phase space distributions over local time and altitude
- Electric and magnetic fields characterizations over frequency domain of interest to the radiation belts

User Community

- Data products for specification and predictive models
- Data products for real-time telemetry for the operations community

Phases of the Program

First phase: utilization of current and near future missions

- Targeted data analysis activities
- Development of modeling techniques and procedures
- Instrument development activities

Second phase: primary flight phase

- Launch about 2008
- Two year lifetime, five year goal
- Data analysis

Third phase: targeted flights to characterize radiation belts

- TBD missions
- TBD instrumentation

Disclaimer

- The Radiation Belt Mapper mission scenario to be presented represents one possible approach.
- Other approaches are possible and should be studied during the formal definition phase.

Therefore nothing to be presented should be considered definitive.

Bounds of Responsibility

- Region of interest extends to geosynchronous altitude
- Substorm effects included only as input to radiation belts
- Input to radiation belts from beyond geosynchronous orbit provided by non-LWS programs
- Polar cap precipitation measurements:
 Galactic cosmic ray intensities are domain of Sentinels
 Solar cosmic ray characteristics are domain of Sentinels
- Auroral precipitation is domain of Ionospheric Mappers
- Geomagnetic cutoff latitudes for galactic and solar cosmic rays is task of Sentinels and modeling
- South Atlantic anomaly is domain of RBM with instrumentation possibly carried by Ionospheric Mapper spacecraft
- Radiation belt precipitation is domain of RBM with instrumentation possibly carried by Ionospheric Mapper spacecraft

RBM Pre-Formulation Activity Timeline

February 15 Started with a clean slate

March 9 Pre-Formulation Definition Team Meeting

March 13-15 Integrated Mission Design Center (IMDC)

March 20-23 Space Weather Conference in Florida

April 20 Resources Analysis Office results

May 2 Space Weather Week in Boulder

May 8 & 9 Return to IMDC

May 10 - 12 LWS Workshop

Pre-Formulation Definition Team

Dan Baker U. Colorado
Janet Barth NASA/GSFC
Col. Mike Bonadonna HQ USAF/XOW

Don Brautigam AFRL Clive Dyer DERA

Joe Fennell Aerospace Corp.
Shing Fung NASA/GSFC
Dale Ferguson NASA/Glenn
Barbara Giles NASA/GSFC
Michael Golightly NASA/JSFC
Bob Hoffman NASA/GSFC

Mary Hudson Dartmouth College

Billy Kauffman NASA/MSFC

Barry Mauk

Don Mitchell

Pat O'Neill

JHU/APL

NASA/JSFC

Geoff Reeves LANL

Howard Singer NOAA/SEL

Richard Thorne UCLA

Dick Wolf Rice University
John Wygant U. Minnesota

Products of Definition Team

- Requirements definition
- Requirements evaluation
- Candidate orbit scenarios
- Instrumentation parameter tables
- Orbit evaluation approach

Requirements Evaluation - part 1

- Regions:

 Inner belt
 Slot belt
 Plasmasphere
 Outer belt, inc. ring current
- Parameter (e.g.):
 Proton fluxes
 Electron fluxes
 Heavy ions
 Waves
 E fields

- Purpose
- Priority: Users Science

RECOON	PURAMETER	PURPOŒ	PR	ORITY	PARA	. METER	LOCATION		UNG ULUR	TEMPORAL	LT	OTHER
			USERS	SCHENCE	RINE	RESOLUTION		RUNE	RESOLUTION	RESOLUTION	RESOLUTION	
Lanca Bado	B- 1 0	O. L	۱.	_	and he U			0	wa 1	l	Out it at a st	
Inn+rb+li	Proton Busses	Soler cell demage	1 !	2	eso M+V	100 percent	L = 1.1 - 25	Omni or crud+	30 d+g.	Daye	Statistical	
		Does, blognd SEEs & blological	1 !	ठ ठ	5 - 500 MeV 550 MeV		L = 1.1 - 25 L = 1.1 - 25	distributions			1 position	
			1 !	-						la .		
		CCDs (s.g., Chendre)	;	٥ •	0.01 -1 M+Y	50 - 100 % .	L = 1.1 - 7			Deyorkee		
		Model improvement	1 1	N			h					
	Hereby is no						L = 1.1 - 25					
	Electron (luxes)	Bedoground & deep dielectric deerging	2	2	0.05 - 10 M+V	100 percent	L = 1.1 - 25	Crude distributions	⊼0 d+g.	Dwy	Statistical	Difficult to messeure
		S/C anomalise and interference	ż	\$	10450 MeV	100%	L = 1.1 - 25	Distribution in Toss cons	5 d+g.	Daya	Statistical	
	•	EVA timing	1 1	N	10450 MeV	100%	L = 1.1 - 25					
		8T8/188 and 4 cap car car c	1 1	N	10450 M4Y	100%	L = 1.1 - 25					
		188 ahia laing daalign	1	N	10 450 MeV	100%	L = 1.1 - 2.5					
	Almos. Density	Proton lifetime <i>e</i>	1	2	Total density	N/A	L = 1.1 - 25	N/A	N/A	Dayo	Statistical	
	Weens	A cool. Amenaport Acas	N	2			L = 1.1 - 25	Lat dienik	10 - 20 d+g	House	Statistical	Amplitudes and polarization.
	Megn+ác á+ld	PA distribution	N	N	N/A	NAC	L = 1.1 - 25	N/A	N/A	N/A	NA	
अल हमा	Proton (Naxee	EVX стей екро <i>ни</i> е	ż	1	0.01- 50 Meu	501%	L = 1.75 - 2.75	Near equator distributions	15 - 20 d+g	c 1 dwy	None	Predict existence and lifetime
	Electron fluxes		2	1	lo 20 M+V		1.					•
	Heavy ione to O		N	8	10-40 M+Y/nu	Actual ch	art is ava	ailable as	separate	e file: R	BM_red	quirements.pdf
	Word	Scattering in alot	N	1	ULF - VLF or high VLF Impercitless		L = 1.5 - 2.5					

Requirements Evaluation - part 2

- Parameter: range (e.g., energy), resolution
- L value range
- Type of distribution

- Temporal resolution
- Local time resolution

RECORN	PARAMETER	PURPOEE	PRI ORITY		PARA	PARA METER			ANG ULAR	LUR TEMPORAL	LT	OTHER
			USER8	SORNE	RUNE	RESOLUTION.		RUNE	RESOLUTION	RESOLUTION	RESOLUTION	
		L						<u> </u>		1_	l	
lm+rb+li	Proton Busses	Soler cell demage	1	2	ರಂ M+V	100 percent	L = 1.1 - 25	Omni or crud+	₹0 d+g.	Deye	Statistical	
		Does, blognd	1	2	5 - 500 M+V		L = 1.1 - 25	distributions			1 position	
		SEE# & biological	1	2	550 M+V		L = 1.1 - 25	1				
		CCD # (n.g., Chendre)	1	2	0.01 -1 M+V	30 - 100 % .	L = 1.1 - 7	1		Deyorker		
		Model improvement	1	N								
	Heavy is no						L = 1.1 - 25					
	Electron (luxes	Bedground & deep dielectric deerging	2	2	0.05 - 10 M+V	100 percent	L = 1.1 - 25	Crud+ distributions	≅0 d+g.	Dwy	Statistical	Difficult to measure
	Protone in South Allentic enomely	S/C enomelies and interference	2	2	10450 M4V	100%	L = 1.1 - 25	Distribution in loss	5 d+g.	Daya	Statistical	
		EVA timing	1 1	N	10 450 M4V	100%	L = 1.1 - 25	1				
		STS/ISS and exploreurs	1 1	N	10450 M4V	100%	L = 1.1 - 25	1				
		188 ehielding deeign	i	Ñ	10450 MeV	100%	L = 1.1 - 25					
	Almos Density	Proton lifetime#	1	2	Total density	NA	L = 1.1 - 25	N/A	N/A	Daya	Statistical	
	Wesse	A coel. Aren aport Acar	N	2			L = 1.1 - 25	Let diatrib.	10 - 20 d+g	House	Statistical	Amplitudes and polarizations
	Magnetic field	P.A. distribution	N	N	N/A	NA	L = 1.1 - 25	N/A	N/A	N/A	N/A	
Slot belt	Proton (luxee	EVA сти й ихро <i>ните</i>	2	1	0.01- 50 Meu	5014	L = 1.75 - 2.75	Near equator distributions	15 - 20 d+g	c 1 dwy	None	Predict existence and lifetime
	Electron (luxes		2	1	lo 20 M+V	50 %	L = 2 - 3.5	Distributions	15 d+g.	c 1 dwy	None	and Intelline
	Heavy ione to O		N	2	10-40 M+V/wc	Actua	al chart is	available	e as separa	te file:	RBM_re	equirements.pdf
	Wester	Scullering in alot	N	1	ULF - VLF or high VLF transmitters		L = 1.5 - 25				I	I

GODDARD SPACE FLIGHT CENTER

Requirements Evaluation

• Regions:

Inner belt
Slot belt
Plasmasphere
Outer belt, inc. ring current

• Parameter (e.g.):

Proton fluxes
Electron fluxes
Heavy ions
Waves
E fields

Purpose

• Priority:
Users
Science

- Parameter: range (e.g., energy), resolution
- L value range
- Type of distribution
- Temporal resolution
- Local time resolution

Candidate Orbits - part 1

All candidate orbits have an additional spacecraft with 2.8 Re apogee for inner belt and slot observations

6 S/C on 3 Nested Petals

- Inner and outer sets of petals precess differentially with LT
- Greater distribution in radial distance and local time

6 S/C on 3 Petals

- 4 semi-radial cuts per period
- Higher time resolution for L distribution

GODDARD SPACE FLIGHT CENTER

Candidate Orbits - part 2

Inclinations ≤12°

5 S/C on 5 Nested Orbits

- All precess differentially with local time
- Simple orbit insertion

6 S/C on 6 Even Petals

- With minimal station keeping, petals remain evenly spaced in local time
- Affords better local time distribution
- Radial cuts in same direction simultaneously, with station keeping

GODDARD SPACE FLIGHT CENTER

Evaluation of Candidate Orbits

- Work in progress
- Need for one or more of the spacecraft to be at intermediate inclination remains an open issue
- Nested option eliminated upon initial evaluation
- Initial IMDC and RAO results discouraged further evaluations
- Current launch approach does not eliminate remaining candidates

Spacecraft Requirements

- Spin stabilized, 6 10 RPM
- Sun pointing within ~15°
- Identical spacecraft
- Standard aerospace manufacturing/fabrication practices (ideal for industry participation)
- Two-year lifetime, five year goal
- High radiation environment
- Continuous downlink for real-time telemetry
- Full instrument complement on each spacecraft

Candidate Instruments in Priority Order

- High-energy particles (1-20 MeV protons; 1-10 MeV electrons)
 Mid-energy particles (30 keV to 1 MeV)
 Very high energy protons (20-500 MeV) on low apogee spacecraft
- Flux gate magnetometer
- Electric field probes (2 orthogonal axes in spin plane)
- Low energy ions and electrons (30 eV 30 keV) Option: include mass analysis
- Search coil magnetometer
- Thermal plasmas density and temperature (< 100 eV) Option: include energy and mass analysis

Constraints Imposed on Feasibility Study

- NASA approved launch vehicle
- Launch from U.S. launch site
- Use of single Delta II or equivalent in cost
- Spacecraft components currently available or available near term
- Instruments available today
- Full environmental testing on all copies
- Cost analysis based on past history
- Cost analysis based on no commonality with other LWS missions

Mass to Orbit via Single Vehicle

- Launch vehicle puts all spacecraft in 500 km x 8400 km, 28° inclination orbit
- Low-apogee and first high-apogee spacecraft are boosted to correct apogees and 12° inclination
- Orbital precession moves the local time of apogee for the remaining satellites with respect to the first satellites
- As each remaining spacecraft moves to the correct local time, it is boosted to the final apogee and its inclination is changed to 12°
- Insertion technique applicable to all candidate orbit configurations

Possible Spacecraft Design

- Mission unique spacecraft design
- Radiation shielding and stacking requirement precludes use of RSDO
- Baseline materials to be composite
- Few new manufacturing/fabrication techniques, standard aerospace practices (ideal for industry participation)
- Hinged magnetic field booms
- Deployable electric field antennas
- No unusual integration difficulties

Spacecraft accommodation on launch vehicle

- Delta II 7920H-10 and Delta IV considered for pre-formulation study
- Volume and placement not a constraint for either launch vehicle
- Launch from Kennedy
- No unusual appendices caging requirements
- No unusual integration difficulties
- No unusual deployment procedure

GODDARD SPACE FLIGHT CENTER

Not all subsystems shown in this view

Comparison Between Definition Team Program and Definition Study

	DEFINITION TEAM	IMDC TECHNICAL	RAO
PARAMETER	PROGRAM	DEFINITION	EVALUATION
Number of spacecraft	7	5-6	3
		(assumes 1 launch vehicle)	(assumes 1 launch vehicle)
Maximum apogee, Re	6.5	6.5	6.5
Inclination capability	< 18°	12°	< 18°
Instrument complement	8	7	8
Real-time data	100 bps	100 bps	500 bps
Science data	67 kbps	67 kbps	67 kbps
Attitude determination	0.3°	0.3°	0.3°
Imager spacecraft w/	1	0	0
IM			

RBM Challenges - Part 1

- Develop core mission scenario based on realistic assessment of technological advances in the next few years, that
 - a) avoids current single source suppliers
 - b) allows concrete basis for cost estimates.
- Find affordable launch scenario that maximizes number of spacecraft on single launch vehicle and achieves minimum inclination (at least for some spacecraft).
- Develop concepts for acquisition of instruments, with calibrations, testing, software development for operations and data processing, post-launch instrument validation, operations and data processing while minimizing staffing.
- Develop concepts for fabrication and calibration of multiple copies of instruments while minimizing costs.

RBM Challenges - Part 2

- Develop concepts for fabrication and testing of multiple copies and integration of spacecraft while minimizing costs.
- Develop environmental testing approach for multiple, identical spacecraft that would assure reliable spacecraft and instruments while minimizing testing costs.
- Evaluate, especially with Ionosphere Mappers mission, spacecraft systems commonalities
- Seek partnering to acquire:
 - a) additional launch opportunities for spacecraft
 - b) flights of opportunity for instruments
 - c) complementary spacecraft missions